THE UNIVERSITY OF MEMPHIS

Background

Difficulties recognizing contextual ambiguity often arise because individuals are burdened with contextual and environmental complexity (e.g., foreground and background information; Broadbent, 1958; Chun, 2000; Liberman & Whalen, 2003; and Wolpert, Doya & Kawato, 2003).

Kraljic and Brennan (2005) found that speakers in these contexts are often not aware of the ambiguity at all.

Cognitive load can be reduced when a speaker's productions are egocentric, though they may be ambiguous for a listener (Rayner, Carlson, & Fraizer, 1983).

Horton and Keysar (1996) suggest that revision through monitoring and adjustment aids interlocutors in avoiding miscommunication.

Goal: to determine the effects of cognitive load on disambiguation behavior in the presence of communication breakdown.

Method

Participants

17 undergraduate students with no diagnosed hearing, visual or speech impairments (12 females, mean age: 22.8 years).

Stimuli

Auditory: 3 types of pre-recorded statements.

- 1. Container + Object: "Put the paperclip in the cauldron on the stop sign."
- Container: "Put the flowerpot on the circle."
- 3. Object: Put the hammer on the rectangle."
- Picture Images:
- Container + Object, Object, Container, & Geometric Shapes

Video:

Correct: Correct object was moved.

Incorrect: Incorrect objects were moved.

Point Display:

Imposed time constraint (7sec). Production time < $7 \sec = + point, > 7 \sec = - point$

Procedure

4 Conditions:

2 (Speeded or Unhurried) x 2 (Mistake or Correct)

Don't Rush the Navigator: Disambiguating Strategies Require Cognitive Flexibility

College of Arts and Sciences

Discussion

When interlocutors are constrained cognitively, they may revert to an "ease of production" strategy because it prevents the cognitive system from becoming overtaxed (Horton & Gerrig, 2005; Roßnagel, 2000).

Evidence from the Unhurried Condition shows, at the time of and during production, a disambiguation strategy may be found or turned "on", thus decreasing production time.

These results provide a theoretical reconciliation between a Monitoring & Adjustment model (Horton & Keysar, 1996) and a "one-bit" model (Brennan, Galati & Kulen, 2010; Galati & Brennan, 2010) of language production.

If interlocutors have the time, they may find the most efficient disambiguating strategy, through trial and error (Monitoring & Adjustment). Once the best strategy is formulated, it should persist.

Current work in our lab supports this notion, via a split speeded/unspeeded task.

References

Bouffard, F. (2003). Draggable [Computer Program]. Retrieved from http:// www.mathworks.de/matlabcentral/fileexchange/4179-draggable. Brainard, D. (1997). The psychophysical toolbox. Spatial Vision, 10, 433-436.

Brennan, S., Galati, A., & Kuhlen, A. (2010). Two minds, one dialog: Coordinating speaking and understanding. In B. Ross (Ed.), Psychology of Learning and Motivation, vol. 53. (pp. 301-344) Academic Press/Elsevier.

Broadbent, D. (1958). Perception and communication. London: Pergamon Press.

Chun, M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170-177.

Galati, A. & Brennan, S. (2010). Attenuating repeated information: For the speaker or for the addressee? Journal of Memory and Language, 62, 35-51.

Horton, W. & Gerrig, R. (2005). The impact of memory demands on audience design during language production. Cognition, 96, 127-142. Horton, W. & Keysar, B. (1996). When do speakers take into account common

ground? Cognition, 59, 91-117. Kraljic, T. & Brennan, S. (2005). Using prosody and optional words to disambiguate utterances: For the speaker or for the addressee? *Cognitive* Psychology, 50, 194-231.

Liberman, A. & Whalen, D. (2003). On the relation of speech to language. Trends in Cognitive Science, 4, 187-196.

Rayner, K., Carlson, M., & Fraizer, L. (1983). The interaction of syntax and semantics during sentence processing. Journal of Verbal Learning and Verbal Behavior, 22, 358-374.

Roβnagel, C. (2000). Cognitive load and perspective-taking: Applying the automatic-controlled distinction to verbal communication. European Journal of Social Psychology, 30(3), 425-445.

Wolpert, D., Doya, K. & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. The Royal Society, Philosophical Transactions: Biological Sciences, 358, 59

Acknowledgments

Special thanks to the research assistants Caitlin Mills, Amy Roche, and Gina Caucci for their invaluable contribution to this study. This project was supported by a grant from the National Science Foundation to Rick Dale (NSF HSD-0826825)